S096.5.02 1

HIGHSPEED SIMULATOR - A SIMULATOR FOR Al.l, SEASONS
K, Patcl, W. Reinholtz, & W. Robison

CdliforniaInstitute of "Technology
Jet I'repulsion 1.aboratory
4800 Oak Grove Drive
Pasadena, California 91109
FAX: (818) 393-1 178. E-mail: keyur.c.patel @jpl.nasa.gov
FAX: (818) 393-1178. E-mail: william.k. reinholtz@jp l.nasa.gov
FAX: (818) 393-1178. E-mail: wilmer.j. robison @jpl. nasa.gov

ABSTRACT: This paper will discuss the cvolution of the Multimission Ground Systems Office’s
(MGSO) High Speed Spacecraft Simulator (11SS) development at the Jet Propulsion 1.aboratory.
This paper will examine the evolution from both a development and operations perspective. The
1ligh Speed Spacecraft Simulator (11SS) in reality isa series of simulators capable of modeling the
spacccraft antl its subsystems at cither the bit or functional level, depending on specific mission
needs, An initial delivery of the HSS was made to the Galileo (G1.1.) Projcct for the sole purpose
of validating the GI.1.1.ow Gain Antenna mission’s flight software resulting from the stuck High
Gain Antenna last year. Duc to the cxcellent performance of the HSS in assisting with the flight
soft ware val idation additional opportunitics were identified for its u sc on the GL.L. Project. These
opportunities included modeling of other on-board data systems, e.g. Command and Data
subsystem, Attitude and Articulation Control subsystem, In addition to the data system simulator
and the flight software validation capabilitics, GI 1. has replicated the 11SS for the purposes of
scquence validation and anomaly investigation to name afew. Because the HSS is a software
emulator of the flight system, the replication costs associated with adding additional "testbeds” arc
not only mini mal but required NO addi t ional M ai ntenance manpower to support. The HSS
provides an unparallcled Set of capabilities and sophisticated tools for supporting the operational
nceds of aproject while providing detailed visibility into the internal workings of the spacecraft.
Today, JP1.'s MGSO organization is actively devcloping High Speed Spacecraft Simulators for
both the Cassini and VVoyager Projects.

The work described in this paper has been earl-icd out by personnel at the Jet I'repulsion
1L.aboratory, California Institute of ‘T'echnology, under contract to the National Aeronautics and
Space Administration.

1. INTRODUCTION

As the complexity of spacecraft and missions increase, the verification of commands and
sequences by usc of conventional means becomes difficult and costly. The construction and
verification of commands and sequences has traditionally been a labor intensive and painstaking
process. The usc of a hardware testbed requires a team of engincers to operate and maintain the
equipment and facility. in addition, the hardware testbed only provides a single simulation
platform duc to the development of additional copies being cost prohibitive.

1lighfidelity spacecraft simulation involves the execution of the actual binary flight software
loads on CPU emulators, interacting with the remainder of the simulator just as it would with
flight hardware. As such, both compute-hscd cornmand errors and the violation of latent
constraints can bec detected. With the advancement of desktop workstations and their
environments it is possible to perform high fidclity ssmulations at Icast at mal-time and often
significantly faster than real-time.

2.11 ISTOR%

Since the advent of microprocessors in spacecraft avionics, it has been considered too complex to
perform a rapid simulat ion of the data operations of a spacecraftbit for bit in order 10 test and
validate planned events. 1lowever, advances in computing technology have provided machines
with previously unimagined capabilities which have made this job feasible. In 1991 the High
Speed Simulation (HSS) cffort was proposcd and approved.

Initial protot ypcs [1] of the GI.1. (which incorporates a data system consisting of six RCA 1802
microprocessors running at 200 K1z and two spaceci aft data bum running at 400 Kilz) HSS
were developed on distributed memory systems interfaced through seria buses. Data transfer rates
and 1atency were critical and eventual 1y it was found that a shared memory host architecture
provided the optimal performancel 2,3). An 8 processor Silicon Graphics computer with 40 MHz
R3000 processors and 2 stage cache interfaces to shar cd memory was used for protot ypes. With
this configuration, it was possible to run a simulation10 times faster than real time and
synchronize processes at 75 Hz in simulated spacecraft time (-750 Hz in real time.) This provided
the performance nceded to build a too] adequat ¢ 10 support spacecraft operations.

MGSO isin the process of delivering production versions of HSS to Cassini (four 1.25 MIP 1750a
microprocessors connected by 1M1z 155 3b data buses) and Vo yager projects (very slow custom
processors), hosted on a Sun SC2000, with twelve SO-MI 1z SuperSPARC processors, two-level
cache (20Kb instruction, 16Kb Data, 1Mb external), 384 Mb of RAM, and 8 GB disk. The Cassini
version of 11SS, when completed, will run at least seven times faster than real-time, alowing all
sequences to be simulated before transmission to the spacecraft. The Voyager HSS, when
completed, Will runat least 700 times faster than real-linlc.

3. HSS OVERVIEW

The 11SS architecture is based uBon components (figure 1,). There is a runtime library of
components (e.g. CPU models, bus models, other spacecraft hard ware models, simulation
schedulers, data viewers, uplink @ nd do wnlink interfaces) each of which has zero or more
interfaces (all standardized) and can be connected at runtime to any other model that supports a

compatible interface.

This architecture provides a number of advantages. The two most important being strongly-typed
runtime component interconnections (called “Splices’) and strong conceptual partitioning. The
former insurcs that incorrect interconnections arc rejected. The latter is a consequence of the fact
that a Com?onent’s interaction with the system is fully specified by its interfaces, and thus the
semantics Of a component can bc understood without having any understanding beyond the
i nterfaces. in order to construct a working simulator, a number of simulation components must
be created and each of their interfaces spliced to a complementary interface. A simulation
component has no internal knowledge of what it isconnected to (other than internal assumptions
about what an interrupt line means, for example), so it is possible to connect any compatible
object to its splices. Onc usc of this iS to interpose a monitoring object between two components
that would normally be spliced directly togethier, which can perforin extra services such as
statistical analysis or graphica display.

The spacecraft systems to bc modeled typically consist of a number of Cl’Us interfaced via
multiple high speed buses and oftcen include scveral smart peripherals. Such a system is best
smulated on a shared-n~cn}ory multi-processor host. 'The spacecraft data system simulation
typicall y consists of one process for each significant spacecraft component, all exccuti nNg
simultaneously on separate host processors. ‘1’ here arc usually about ten such processes. Each
process advances its components for an appropriate time slice, then all processes synchronize to
assure that they stay in relative time step. The dlice size is usualy the largest such that causality is

w

not violated (usually ten to a hundred per second), but in some cases (e.g., debugging) the slice
may be a microsecond, or even lcss.

C++4was choscenas the implementation language for simulation components, because of its run
time efficiency and its support for object-oriented programming. A processor component, for
cxample, may emulate a hardware instruction set and the code which implements this must be
sufficiently fast to meet the performance objectives of the simulator

1SS Architecture "AACS. 4
SiinTel
Cind
Iface
BCIOU |-
I 8085
X ver ASIC
[wf viﬂj ROM
RAM
ic nts)}t\g{s
GUT Schedular]| 1 o
[T'f,’rf!] SinTel ot
charg SRU_a
’ s
ot AA
[‘3"’9 o bus
[Fiend device
o KEU [ij?&ii} _
KEU . it
\‘b SitnTe Typical
—— BC
Cmad deviec...
Iface F’nuﬁ
[ﬁK
AAc ‘tus

Figure 1: HSS Architecture Diagram

Most componcnts contain’ a embedded interpreter which recognizes the language Tcl. Tcl is a
freely available embeddable language and concrete interpreter implementation developed at the
University of Cdifornia, Berkeley. I'cl was augmented to make it multi-thread ("MT") safe and to
add additional features, in particular a C++ class wrapper and a fast "remote procedure call” that
can cxccute commands remotely on named interpreters (many of the components within HSS
cent ain named interpreters, which arc used to manipulate the component) and return the result of
the execution to the local interpreter. The 11SS *1”cl subsystem is used for many things, including
mode.1 statec examination and alterat ion, establishinent of model i nterconnections, and model state
monitoring and display (using Tk, atoolkit bascd on ‘I’ cl which can quickly create Graphical User
In(crl’aces). As a general rule, el isu sed unless cither performance or robustness concerns
dictatc the usc of splices.

The current version of 11SS includes an Automatic Code Generator (ACG) based on the NASA
CLIPS expert system. It is used to gencrate most of the code that can be deduced from concise
specifications. This both makes it unnccessary for the developers to derive the needed code (or
even to understand how to do sol), and it makes it easy to alter the implementation because though
aconcept may appear in many places, it only nced be altered once in the ACG.

The 11SS implementation consists of objects which model the large grain hardware components of
aspacecraft (€. g., 1750a processors Or 1553b bus controllers for Cassini (figure 2.)). It was
observed that these components exhibited a natural packaging, with a small number of well
defined interfaces. For example, a processor usualy contains at least onc read/write interface to an
address space. The processor is modeled as an object which i ncludes an cmbcedded address
interface object, and performs reads or writes to addresses via this cmbedded object. The address
interface objeet is conncected at run lime with another address interface object, which forwards a
read or write operation into its owner component for action, '

chs

CDS 15538 BUS

RR& Simulstion Fidelity
S Bit Leve!
2 L PMS g]
SENSORS, _ |- [[J Bit Level & Funzional
[HR USTHRS, RSP -
INOINE GIMHILS, :
<FAC310N WH:EL.S - — Funetionat
[RTloq

Figure 2: Cassini 11SS A rchitecture

Simulation components usualy contain more than onc interface, e.g., processors contain interrupt
and other scrvice lines. A simulation component can contain any number of interface objects,
including multiple copies of a single kind of interface. A component is used during a simulation
run by creating a ncw instance of its type and then hooking up each of its interfaces to a
complementary interface.

The 11SS system includes a bit-level or functional-level simulation of the hardware components of
the spacecraft System. Because the components arc decoupled from each other and communi cate
Onlci/ via their interface, they can be connected in any way that meets localized objectives for speed
and functionality. ‘1’ here can be several component implement aliens for a single processin
component in the spacceraft, and the choice of which to usc can be made at run time. Bit-lev
simulations arc used where fidelity is of prime concern. [;tlrictiollal-level simulations arc used
where performance is most important.

The design philosophy for simulation components was that they should contain a simple and
minimal sct of C++ member functions ﬂmethods) to implement their functionality, but contain a
language interpreter which would allow construction of arbitrarily complicated compound

operations bascd on the atomic member functions. It was felt that it would be hard to anticipate all
of the functionality that might be desired from asiinulation component, but that by providing a
language which could access a component's basic operations we could provide any feature needed
without extensive redevelopment,

All components share a small set of common functions, which include an “execute’ command to
causc simulation for a specified length of timeand a‘set’ command’ for setting and retrieving the
value of a component’s internal variables. A component's class definition contains a declaration of
al internal variables that will be available to “I’cl via the ‘set’ command, which can include.
processor registers, memorics, and other metadata which a component contains such as lists of bus
transactions, ctc.. Objects which inherit from a base class object receive the same ‘I’ ¢l fu net ional it y
without having to redeclare it. Individual component classes may also extend their command set
to provide functions particular to their operation

The simulator operatesin an i nt erpreted fashion in constructing a spacecraft model to perform a
patticular smulation. A single object is initialy constructed, the "executive", which is responsible
for interpreti ng further commands to create objects, splice them together, and exccute simulation
activities. It then waitsin ascrvice loop for further commands from a user interface component, if
on¢ has been created, or from the standard input if onc has not.

The interpreted nature of system construction allows for agreat deal of fiexibility. 1tis possibleto
create astandard simulation from a batch file, or to create a graphical user interface (GUI) which
offers choices for configuration options to allow a uscr to bring up a customized simulator.

Commands to the executive arc ‘I’ cl commands which are specia to its class: “simnew' for invoking
component constructors, ‘splice’ for connecting component embedded interfaces together, etc.
Another command which is specia to the cxccutive is simsend', which alows a “I’cl command to
be sent to any object that has been crcated. This alows script driven ad hoc queries and
computation (o be performed at any time, giving alar g¢c amount of adaptability and flexibility to
the Smulation system

"The simulat ion can be operated by sending ‘I’ ¢l “execute' commands via the exccutive's “simsend’
commands, but this is not fast enough for project specific simulation runs, Instcad, a‘ scheduler'
component iS crecated which can form execution splices to sSimulation components, which add
minima overhead in invoking component execution wcember functions.

The scheduler is responsible for enforcing rendezvous points during execution, During parallel
cxecut ion of asimul a ion, a number of machi nc ¢ ycles for different components may bc executed
simultaneously ant] asynchronously, and if any interaction between components occurs at this
time it will most likel y not refiect the event ordering that occurs on the real hardware. Rendezvous
providce synchronization and a merging of threads so that component interactions arc properly
ordered. Rendezvous times can be sc(to any value, from aslittle as onc simulation clock cycle to
any arbitrarily higher value. A onc clock cycle rendezvous ensures perfect fidelity to the
spacecraft hardware, but the overhead from this number of rendezvous greatly reduces
performance. Setting larger rendezvous values allows us to achicve higher performance, but there
IS an upper limit to the sizc of a rendezvous before the simulation fails 10 mirror the actual
hard ware. in the G1.1. spacecraft, most transactions bet wcen spacecraft components occur at a
"real time interrupt” (RT1) which occurs every 1/15 second, but a number of sub-RT1 transactions
also occur. Wc have found that rendezvousing at 1/5 of an R'T1 gives the largest time dice that will

work, but which till allows us to attain a ten times real time smulation,

Rendezvous points arc enforced by the scheduler even when execution commands arc sent which
would otherwise cause a rendezvous point to bc overrun. For example, a user might choose to
single step the simulator through an interesting portion, then ask it to jump ahead onc RTI. The

6

scheduler issues commands 10 components 10 exccute for a particular number of clock cycles, and
reads the rcturn value of the call to find the actual number of cycles executed (a component may
cxccute less than the number of requested cycles if it cannot finish an atomic operation). 1t then
compulcs the correct number of cycles to send to each component on the next command based
on éhc running total of exccuted time for each component and the length of time to the next
rendezvous.

A simulation may be run on a single processor or multiple processor machine with no change in
code or configuration. On a single processor machine, a parallel simulation simply cxccutes
scquentially.

‘Monitors' arc simulation components which arc not part of a spacecraft model, and which serve as
companion components that watch and report on the state of a spacecraft component, Like all
components, they contain aTclinterpreter Which can provide any desired functionalist y by loading
the proper “I’cl program. Monitors can bc created on the fly, and can bc added to or deleted from
the scheduler as necessary. Monitors often usc "simsend" to communicate with their companion
_comsggnent, but in some Cases (c.g. examination of alarge number of memor y locations) a splice
IS used, instead

Onc usage of monitors is for debugging: the monitor is set to watch for any interesting state
specified by the logic in its script. On detection Of this state, it can send a message or a request to
hal t of the simulation run. 1t can aso bc used 1o send periodic values back 10 the executive which
can bc forwarded to a user interface for display in any desired way, e.g. strip chart, dial, text, etc.

4. OPERATIONS

11SS is dc.signed to fit into the current mission opcrat ions processes. The simulator lakes i nput
files and flight software loads “asis’. The 11SS accepts uplink commands in the same way as the
actual spacecraft. The tclemetry data stream gencrated by 11SS can bc connected 10 the real
ground telemetry handling system of the Ground 1 Jata System.

During execution, 11SS gencrates afile which contains atimestamped list of commands exccuted
by the spacecraft. ‘The tile can be compare.d with a prediction file generated by the MGSO
scquence generation software, tO validate that commands will be executed at the correct time on

the spacecraft.

The simulation may bc checkpointed at requested intervals. ‘The checkpointed state can be
restored a a later lime to continue execution. ‘'T'his function can aso bc used afier the detection of
an anomalous Condition, by restoring the most rcecentl y checkpointed stale vector and then single
step forward unt i] the anomaly is again encount cred. This wilf allow monitorsto do sampling at
longer intervals while still providing for a capability to pinpoint an cxact anomaly state, without
significant y degrading simul ator performance. Multiple copies of the checkpointed state can be
run on multiple machines to explore multiple state space paths concurrently.

11SS providesthe capability (called timejump) to rapidly advance time across quicscent periods,
thus significantly increasing simulation speed. Bccause all components of the spacccraft arc
available to the simulator, the user can tell the spacccraft that an arbitrary amount of time has

sed and thus advance the state of the spacecraft to the new time. The user must be careful that
no impel-tant activities arc passed over.

11SS provides the capability to simulate any spacecraft faults, because the complete state of the
spacccraft iSavailable during the sSimulation, The user must identify the signature of the fault.

'The simulator can inject that signature onto the spacecraft Simulation. The user can then sce how
the spacecraft reacts to the simulated fault

11SS's unsurpassed visibilit y plus it’s rexd-time environment provides an excellent environment to
test flight software. Flight softwarc developers have been hampered by debuggers that arc not
rea-time oriented, They arc sufficient for testing paths within routines, but arc not sufficient to
validate the correct operation of flight software at the spacecraftlevel. Traditionally, hardware test
platform arc in short supply andg generall Y have to be shared by software and hardware
developers. 11SS can provide any number of test platforms with much more visibility than is
generall y available from hardware lest plat forus.

Much of 11SS's visibility is derived from its usc of the. ‘J cl scripting Ianguaﬂe. Xach component of
the s?acecraft being simulated is designed with visibility in mind so that the user may view and
modify registers, memory, etc. which arc of interest, Because the visibility is accessible from ‘1’ cl,
the user may gencrate condition checking of arbitr ary complexity. The user can test for the
combination o? any number of variables with full arithmetic and Boolcan functions. The ‘Jcl
scripting language also allows the user to automate the execution of the simulator. The user may
compose a script commanding the simulator Tfrs(gwriatcl y. The user at any time may validate that
any conditions expected arc stillvalid. The developers usc this capability to run regression
testsnightly.

5. FUTURE DIRI:CTION

A number of ways have been identified to reduce the cost of developing 1SS simulators. The
theme common to the ideas outlined below is to move the representation of the simulation more
towards the application domain, and away from the development domain. This will reduce the
cffort required to create sSimulators, because less translat 1 on from speci fication to implement ation
willbe required, and because we will be able to t ake bet ter advant age of domain expertise. In
other words, onc day those that underst and the spacecraft archi tect urc will be directl y involved in
the g:rgczjalion of the simulation, because esoteric development knowledge and skill will not be
required.

GU1-based simulation construction - ‘1’ here is no convenient and “intuitive” way of
representi ng the design of a spacecraft simulation. It would not be too difficult to
build a GU1-based spacecrart builder that allows the simulation designer to select
components and specify their interconnections. This should require less tool skills of
the designer than the current script-based notation, and so allow individuals with
domain knowledge, but not profound tool knowlcdge, to do such work.

Gene.rate models dircctly from specifications - There arc often hardware-oricn[cd
(e.?. VHIDI. or Verilog) model specifications available, created as a byproduct of
building the spacecraft hardware. Conventional simulation of such products is far too
slow, but there is promising work suggesting that it may become possible to exccute
such modecls at the functional 1evel with relaxed fidelity, with performance sufficient
for our needs. This would reduce the 11SS development cycle time and cost, and
i ncrease reli abilit y, because the currentl y human-intensive process of converting
hardware specifications into high-performance 11SS models might onc day be
automated,.

User-programmable models - Most models, especiall y complicated ones, arc writ ten in
C++ and so to work on such a model, the developer must be a programmer as well.
Considcration has been given to implementing modecls that directly execute domain-
oricnted notations (e.g., S(atc-based, ru]c-based, or procedural) so that (1) the model
implement ation ismore closcl y related to the specificat ion; and (2) domain experis
can write or inspect the models more easily.

6. CONCILLUSION

11SS has shown that high speed smulation is possible for comPIex spacecraft systems with high
fidelity. The 11SS can be used for avariety of testing ranging from scquence to flight software.
The HSS has been successfully used on GLL for both sequence and flight software testing. 1.ater
this year HSS will be deliverced to both Cassini and Voyager projects.

7. REFERENCES
1) John E. Zipsec and Raymond Y. Ycung, “A Multi-Mission High Speed Spacecraft Simulator

Concept”, I'reposal June 1991.

2) Alan Morrissctt et al, “Multimission High Speed Spacecraft Simulation for the Galileo and
Casani Missions’, AIAA Computing in Acrospace 9, 1993.

3) W. K. Reinholtz. and W. J. Robison, “The Z1PSIM Scrics of High Performance, High Fidelity
Spacccraft Simulators’, 8th Annual AIAA/USU Conference on Small Satellites, August 1993.

